Questão 1

a)
Usando a régua da figura para medirmos o raio do movimento circular do ponteiro, temos:

\[r = 2,8 \text{ cm} \]
\[v = \omega r = \frac{2\pi r}{T} = \frac{2 \times 3}{60} \times 2,8 \text{ cm} = 2,8 \text{ mm/s} \]

b)

\[i_{\text{média}} = \frac{q}{Dt} = \frac{2,4 \text{Ah}}{400 \times 24 \text{h}} = \frac{1}{4000} \text{ A} = 2,5 \times 10^{-4} \text{ A} = 0,25 \text{ mA} \]

Questão 2

a)
Cada jogador se desloca 6 m até a posição do encontro. Assim,

\[x = 6,0 \text{ m} = \frac{1}{2} at^2 = \frac{1}{2} (3,0 \text{ m/s}^2) t^2 \Rightarrow t = \sqrt{4,0} \text{ s} = 2,0 \text{ s} \]

b)
A distância mínima entre A e Z é dada por:

\[\Delta x = v_{rel} \Delta t = (12 \text{ m/s}) \times 0,1 \text{ s} = 1,2 \text{ m} \]
RESPOSTAS ESPERADAS – FÍSICA

Questão 3

a)

\[F = \frac{9,6 \times 10^{-39}}{d^4} = k\Delta x \]

\[k = \frac{9,6 \times 10^{-39}}{d^4 \Delta x} = \frac{9,6 \times 10^{-39}}{(10^{-7})^4 \times 6,4 \times 10^{-9}} = 0,015 \text{ N/m} \]

b)

\[\frac{1}{2}kx^2 = 1,4 \times 10^{-23}T \]

\[x = \sqrt{\frac{2 \times 1,4 \times 10^{-23}T}{k}} = \sqrt{\frac{2 \times 1,4 \times 10^{-23} \times 300}{2,1 \times 10^{-1}}} = 2 \times 10^{-10}m = 0,2 \text{ nm} \]

Questão 4

a)

\[T_{\text{rotação}} = T_{\text{translação}} \]

\[T_{\text{translação}} = 27 \text{ dias} = 648 \text{ horas} \]

\[v_{\text{orb}} = \frac{2\pi r}{T} = \frac{6 \times 380000 \text{ km}}{648 \text{ h}} = 3519 \text{ km/h} \]

b)

\[E = \frac{1}{2}mv^2 = \frac{1}{2}m(2gR) = mgR \]

\[E = 10 \times 6400000 \times 70 = 4,48 \times 10^9 \text{ J} \]
Questão 5

a)

\[PV = nRT \Rightarrow V = \frac{nRT}{P} \]

\(n = 1 \)

\(\theta = -50^\circ C \Rightarrow T = 223 K \)

\(P = 30 \text{ kPa} = 30 \times 10^3 \text{ Pa} \)

\(V = \frac{1 \times 8.3 \times 223}{30 \times 10^3} \text{ m}^3 = \frac{1851}{30} \approx 61.7 \)

b)

\[P = P_0 - \rho gh \Rightarrow \rho = \frac{P_0 - P}{gh} \]

\(\rho = \frac{(100 - 94) \times 10^3}{700 \times 10} \text{ kg/m}^3 = \frac{6}{7} \text{ kg/m}^3 = 0.86 \text{ kg/m}^3 \)
RESPOSTAS ESPERADAS – FÍSICA

Questão 6

a)
A fórmula correta para as frequências naturais da corda é: \(f_n = N \left(\frac{\sqrt{2} \nu}{2L} \right) \). Assim,

\[
\tau = \mu v^2 = \mu \left(2L f_1^{\text{fina}} \right)^2 = 5 \times 10^{-3} \frac{\text{kg}}{\text{m}} \times (1,0 \text{ m} \times 220 \text{Hz})^2
\]

\[
\tau = 5 \times 10^{-3} \times (220)^2 \frac{\text{kgm}}{\text{s}^2} = 242 \text{ N}
\]

Com a fórmula fornecida no enunciado, a solução seria:

a)

\[
\tau = \mu v^2 = \mu \left(L f_1^{\text{fina}} \right)^2 = 5 \times 10^{-3} \frac{\text{kg}}{\text{m}} \times (0,5 \text{ m} \times 220 \text{Hz})^2
\]

\[
\tau = 5 \times 10^{-3} \times (110)^2 \frac{\text{kgm}}{\text{s}^2} = 60,5 \text{ N}
\]

b)

\[f_{\text{bat}} = f_1^{\text{fina}} - f_2^{\text{grosa}} \Rightarrow f_2^{\text{grosa}} = f_1^{\text{fina}} - f_{\text{bat}} = (220 - 4) \text{Hz} = 216 \text{Hz} \]

\[f_1^{\text{grosa}} = \frac{1}{2} f_2^{\text{grosa}} = \frac{216}{2} \text{Hz} = 108 \text{Hz} \]

Questão 7

a)

\[|\vec{F}_{\text{atrito}}| = E_C \]

\[|\vec{F}_{\text{atrito}}| = \frac{f_{\text{atrito}} \cdot d_{\text{atrito}}}{1,5 \times 10^3 \text{ m}} \Rightarrow \vec{F}_{\text{atrito}} = \frac{4,5 \times 10^4 \text{ J}}{1,5 \times 10^3 \text{ m}} = 30 \text{ N} \]

b)

\[Q = mc \Delta \theta = 0,19 \times 0,9 \times \frac{\text{J}}{\text{g} \cdot \text{C}} \times 2400 \text{C} = 216 \text{ J} \]
RESPOSTAS ESPERADAS – FÍSICA

Questão 8

a)
\[m_a v_a + m_p v_p = 0 \]
\[v_a = -\frac{m_p}{m_a} v_p = -\frac{80}{60} \times 0,15 = -0,2 \text{ m/s} \]

\[F[N] \]
\[F_{\text{max}} \]
\[0,3 \quad 0,6 \quad 0,9 \quad t[s] \]

b)
\[|Q_p| = m_p v_p = 80 \times 0,15 = 12 \text{ kgm/s} \]
\[|I| = \text{área}(F \times t) = F_{\text{max}} \times 0,6 = 12 \]
\[F_{\text{max}} = 20 \text{ N} \]

Questão 9

a)
Estimando uma força exercida pelo dedo de 0,5 N, temos:
\[P = \frac{F}{A} = \frac{0,5}{0,25 \times 10^{-4}} = 2,0 \times 10^4 \text{ N/m}^2 \]

\[R_T = 3 \text{ k}\Omega, I = \frac{6}{3} \times 10^{-3} = 2 \times 10^{-3} \text{ A} \]
\[V_{CD} = 1 \text{ k}\Omega \times 2 \times 10^{-3} = 2 \text{ V} \]
RESPOSTAS ESPERADAS – FÍSICA

Questão 10

a)

\[\frac{\Delta t}{t_{\text{Terra}}} = \frac{\Delta U}{mc^2} = \frac{mgR_T \left(1 - \frac{R_T}{r}\right)}{mc^2} \]

\[\Delta t = t_{\text{Terra}} \frac{gR_T \left(1 - \frac{R_T}{r}\right)}{c^2} = 86400 \times \frac{10 \times 6.4 \times 10^6 \times \left(1 - \frac{1}{4}\right)}{9 \times 10^{16}} \]

\[\Delta t = 46080\,\text{ns} \]

b)

\[\frac{\Delta t}{t_{\text{Terra}}} = 10^{-16} = \frac{\Delta U}{mc^2} = \frac{mgh}{mc^2} \]

\[h = \frac{10^{-16} c^2}{g} = \frac{10^{-16} \times 9 \times 10^{16}}{10} = 0.9\,\text{m} \]

Questão 11

a)

\[\Delta V = EL = 1,0 \times 10^{-4} \, \frac{\text{N}}{\text{C}} \times 2,0 \times 10^{-2} \, \text{m} = 2,0 \times 10^{-6} \, \text{V} \]

b)

\[qE = qvB \Rightarrow v = \frac{E}{B} = \frac{1,0 \times 10^{-4}}{0,2} = 5,0 \times 10^{-4} \, \text{m/s} \]
Questão 12

a) O raio E representa a trajetória do raio de luz quando o meio 2 é um metamaterial.

\[|n_1| \cdot \sin \theta_1 = |n_2| \cdot \sin \theta_2 \]

\[1,8 \times \frac{1}{2} = |n_2| \times \frac{\sqrt{2}}{2} \]

\[|n_2| = \frac{1,8}{1,4} \approx 1,28 \]

b)

\[v = \frac{1}{\sqrt{2 \times 10^{-11} \times 1,25 \times 10^{-6}}} = 2,0 \times 10^8 \text{ m/s} \]

\[n = \frac{c}{v} = 1,5 \]